Responses of reticulospinal neurons in intact lamprey to vestibular and visual inputs.

نویسندگان

  • T G Deliagina
  • P Fagerstedt
چکیده

A lamprey maintains the dorsal-side-up orientation due to the activity of postural control system driven by vestibular input. Visual input can affect the body orientation: illumination of one eye evokes ipsilateral roll tilt. An important element of the postural network is the reticulospinal (RS) neurons transmitting commands from the brain stem to the spinal cord. Here we describe responses to vestibular and visual stimuli in RS neurons of the intact lamprey. We recorded activity from the axons of larger RS neurons with six extracellular electrodes chronically implanted on the surface of the spinal cord. From these multielectrode recordings of mass activity, discharges in individual axons were extracted by means of a spike-sorting program, and the axon position in the spinal cord and its conduction velocity were determined. Vestibular stimulation was performed by rotating the animal around its longitudinal axis in steps of 45 degrees through 360 degrees. Nonpatterned visual stimulation was performed by unilateral eye illumination. All RS neurons were classified into two groups depending on their pattern of response to vestibular and visual stimuli; the groups also differed in the axon position in the spinal cord and its conduction velocity. Each group consisted of two symmetrical, left and right, subgroups. In group 1 neurons, rotation of the animal evoked both dynamic and static responses; these responses were much larger when rotation was directed toward the contralateral labyrinth, and the dynamic responses to stepwise rotation occurred at any initial orientation of the animal, but they were more pronounced within the angular zone of 0-135 degrees. The zone of static responses approximately coincided with the zone of pronounced dynamic responses. The group 1 neurons received excitatory input from the ipsilateral eye and inhibitory input from the contralateral eye. When vestibular stimulation was combined with illumination of the ipsilateral eye, both dynamic and static vestibular responses were augmented. Contralateral eye illumination caused a decrease of both types of responses. Group 2 neurons responded dynamically to rotation in both directions throughout 360 degrees. They received excitatory inputs from both eyes. Axons of the group 2 neurons had higher conduction velocity and were located more medially in the spinal cord as compared with the group 1 neurons. We suggest that the reticulospinal neurons of group 1 constitute an essential part of the postural network in the lamprey. They transmit orientation-dependent command signals to the spinal cord causing postural corrections. The role of these neurons is discussed in relation to the model of the roll control system formulated in our previous studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responses of reticulospinal neurons in intact lamprey to pitch tilt.

In the swimming lamprey, a postural control system maintains a definite orientation of the animal's longitudinal axis in relation to the horizon (pitch angle). Operation of this system is based on vestibular reflexes. Important elements of the postural network are the reticulospinal (RS) neurons, which are driven by vestibular input and transmit commands for postural corrections from the brain ...

متن کامل

Postural control in the lamprey: A study with a neuro-mechanical model.

The swimming lamprey normally maintains the dorsal-side-up orientation due to activity of the postural control system driven by vestibular organs. Commands for postural corrections are transmitted from the brain stem to the spinal cord mainly by the reticulospinal (RS) pathways. As shown in previous studies, RS neurons are activated by contralateral roll tilt, they exhibit a strong dynamic resp...

متن کامل

Modifications of vestibular responses of individual reticulospinal neurons in lamprey caused by unilateral labyrinthectomy.

A postural control system in the lamprey is driven by vestibular input and maintains the dorsal-side-up orientation of the animal during swimming. After a unilateral labyrinthectomy (UL), the lamprey continuously rolls toward the damaged side. Normally, a recovery of postural equilibrium ("vestibular compensation") takes about 1 mo. However, illumination of the eye contralateral to UL results i...

متن کامل

Responses of reticulospinal neurons in the lamprey to lateral turns.

When swimming, the lamprey maintains a definite orientation of its body in the vertical planes, in relation to the gravity vector, as the result of postural vestibular reflexes. Do the vestibular-driven mechanisms also play a role in the control of the direction of swimming in the horizontal (yaw) plane, in which the gravity cannot be used as a reference direction? In the present study, we addr...

متن کامل

Vestibular compensation in lampreys: restoration of symmetry in reticulospinal commands.

Removal of a vestibular organ (unilateral labyrinthectomy, UL) in the lamprey results in a loss of equilibrium, so that the animal rolls (rotates around its longitudinal axis) when swimming. Owing to vestibular compensation, UL animals gradually restore postural equilibrium and, in a few weeks, swim without rolling. Important elements of the postural network in the lamprey are the reticulospina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 83 2  شماره 

صفحات  -

تاریخ انتشار 2000